People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research

Common Core of Science and Technology University of Batna 2 Faculty of Technology **Engineering Section**

Module: Calculus 2 (Analyse 2)

Tutorial Session N°3

Exercise n°1

Solve the following differential equations.

a.
$$\frac{d^2y}{dx^2} = \sin(2x)$$
 initial conditions $y(\pi) = 0$, $y'(\pi) = 1$

b.
$$\frac{d^4y}{dx^4} = 3x - 1$$
 initial conditions $y(0) = y'(0) = y''(0) = y'''(0) = 0$

Exercise n°2

Solve the following differential equations.

a.
$$y'' - 5y = 0$$

b.
$$2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} = 0$$

c.
$$9y'' - 12y' + 4y = 0$$

d.
$$y^{(5)} - 2y^{(4)} + y^{(3)} = 0$$

e.
$$D^2(D+1)^3(D-2)(3D+5)(2D-3)y=0$$

f.
$$(D^3 - 11D^2 + 31D - 21)y = 0$$

g.
$$(4D^3 - 24D^2 + 35D - 12)y = 0$$

h.
$$y'' - 4y = 0$$
 initial conditions $y(0) = y'(0) =$

h.
$$y'' - 4y = 0$$
 initial conditions $y(0) = y'(0) = 4$.
i. $(D-1)^2(D+2)y = 0$ initial conditions $y(0) = y'(0) = 0$, $y''(0) = 9$

Exercise n°3

Solve the following differential equations.

a.
$$9y'' + y = 0$$

b.
$$y^{(4)} - 16y = 0$$

c.
$$(D^2 + 1)(D^2 + D + 1)y = 0$$

d.
$$(D^2 + 4D + 5)^2 y = 0$$

e.
$$(D^3 - D^2 + 9D - 9)y = 0$$

f.
$$(D^4 - 1)y = 0$$

g.
$$(D^2 + 1)^4 y = 0$$

h.
$$16y'' + y = 0$$

initial conditions
$$y(0) = 2$$
 $y'(0) = 9$