People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research

University of Batna 2 Common Core of Science and Technology
Faculty of Technology Engineering Section

Module: Algebra 1 (Algèbre 1)

Tutorial Session N°1

Exercise n°1

Let U = R, be the universal set, $A = \{x \in R \mid 0 < x \le 3\}$, and $B = \{x \in R \mid 2 \le x < 4\}$.

Find $A \cup B$, $A \cap B$, B - A, and \bar{A} .

Exercise n°2

- a. Let U = R, and $A_i =]-i$, i[for each positive integer i. Find $\bigcup_{i=1}^{\infty} A_i$.
- b. Let U=R, and $A_i = \left]0, \frac{1}{i}\right[$ for each positive integer *i*. Find $\bigcap_{i=1}^{\infty} A_i$.

Exercise n°3

- a. Let U=R, and $A_i = \left[\frac{1}{i+1}, \frac{1}{i}\right]$ for each positive integer *i*. Show that the collection $\{A_1, A_2, ...\}$ forms a partition of]0,1[.
- b. Let U=R, and $A_i = [-i, i[$ for each positive integer i. Explain why the collection $\{A_1, A_2, ...\}$ is not a partition of $]-\infty, +\infty[$.
- c. Let U=R, and $A_i = [i-1, i[$ for each positive integer i. Explain why the collection $\{A_1, A_2, ...\}$ is not a partition of $]0, +\infty[$.

Exercise n°4

- a. Let $A = \{7,10\}$. Find P(A).
- b. Let $A = \{a, b, c, d\}$. Find P(A).
- c. Let $A = \{a, b, \}$ and $A = \{a, d\}$.
 - i Find $A \times B$.
 - ii Find $B \times A$.

Exercise n°5

- a. Prove the distributive law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- b. Prove the following: for all sets A and B, if $A \subseteq B$, then $\bar{B} \subseteq \bar{A}$

Exercise n°6

- a. Let $f: Z \to Z$ be the function defined by $n \to 3n$.
 - i Find the range of f.
 - ii Find the preimages of 12, 18, and 20.
- b. Let $f: Z \to Z$ be the function defined by $n \to n + 4$.
 - i Find the range of f.
 - ii Find the preimages of -5, 8, and 17.

Exercise n°7

Let $f: Z \to Z$ be the function defined by f(n) = 5n + 4. Show that f is one-to-one.

Exercise n°8

Let $f: Z \to Z$ be the function defined by $f(n) = n^4$. Show that f is not one-to-one.

Exercise n°9

Let $f: Z \to Z$ be the function defined by $f(n) = 2^n$. Show that f is not onto.

Exercise nº 10

Let $f: Z \to Z$ be the function defined by f(n) = -n. Show that f is onto.

Exercise n°11

Let $f: Z \to 2Z$ be the function defined by f(n) = 2n. Show that f is onto. 2Z is the set of all even integers. Show that f is a one-to-one correspondence.

Exercise n°12

Find the inverse function of the function in the previous exercise.

Exercise n°13

Let $f: Z^+ \to Z^-$ be defined by f(n) = -n. Z^+ is the set of positive integers, and Z^- is the set of negative integers. Show that f is one-to-one correspondence.

Exercise no 14

Find the inverse function of the function in the previous exercise.

Exercise n°15

Let $f: R \to R$ be defined by f(x) = |x|, and $g: R \to R$ be defined by g(x) = x + 1. Find the composition $g \circ f$, then find $f \circ g$. Determine if $f \circ g = g \circ f$.

Exercise n°16

Let B be the set of all finite strings of 0's and 1's. let $f: B \to B$ be defined by $f(b) = \overline{b}$, where \overline{b} is the string b in reverse order.

Let $g: B \to B$ be defined by g(b) = 1b1 the string b with 1 attached in front of b and after b. For example, if b = 01011, then 1b1 = 1010111. Find the composition $g \circ f$, then find $f \circ g$. Determine if $f \circ g = g \circ f$.

Exercise n°17

Let $f:]1, \infty[\to]0,1[$ be defined by $f(x) = \frac{1}{x}$. Show that f is a bijection.

Exercise n°18

Let B be the set of all finite strings of 0's and 1's. let 1B1 be the set of all finite strings of 0's and 1's that begin and end with a 1. Prove that B and 1B1 have the same cardinality.

Exercise n°19

Define a relation \mathcal{R} on Z^+ as follows. For positive integers m and n, $m\mathcal{R}n$ just in case m|n (that is m divides n). Determine if $3\mathcal{R}(12)$, $4\mathcal{R}(-16)$, $3\mathcal{R}(11)$.

Exercise n°20

Let *B* be the set of all finite strings of 0's and 1's. Define a relation on *B* as follows:

For strings b_1 and b_2 , $b_1 \mathcal{R} b_2$ just in case the number of 1's in b_1 is the same as the number of 1's in b_2 . Determine if $(0101)\mathcal{R}(1100)$, $(0101)\mathcal{R}(1000)$, $(1101010)\mathcal{R}(101101)$.

Exercise n°21

Consider the "divides" relation \mathcal{R} on Z^+ defined as follows:

For positive integers m and n, $m\mathcal{R}n$ just in case m|n. Determine if \mathcal{R} is reflexive, symmetric, or transitive.

Exercise n°22

Consider the relation \mathcal{R} on \mathcal{B} defined as follows:

For strings b_1 and b_2 , $b_1 \mathcal{R} b_2$ just in case the number of 1's in b_1 is the same as the number of 1's in b_2 . Determine if \mathcal{R} is reflexive, symmetric, or transitive.

Exercise n° 23

Consider the relation \mathcal{R} on Z defined as follows:

For integers m and n; $m\mathcal{R}n$ just in case m=n or m=-n. Show that \mathcal{R} is an equivalence relation.

Exercise n°24

Consider the relation \mathcal{R} on Z defined as follows:

For integers m and n; $m\Re n$ just in case $3|(m^2-n^2)$. Show that \Re is an equivalence relation.

Exercise n°25

Let S be the set of all finite strings of 0's and 1's of length 2 or more. Consider the relation \mathcal{R} on S defined as follows:

For strings b_1 and b_2 in S, $b_1 \mathcal{R} b_2$ just in case the first two characters of b_1 are the same as the first two characters of b_2 . Show that \mathcal{R} is an equivalence relation.

Exercise n°26

Let S be the set of all finite strings of 0's and 1's of length 2 or more. Let \mathcal{R} be the equivalence relation on S defined as follows:

For strings b_1 and b_2 in S, $b_1 \mathcal{R} b_2$ just in case the first two characters of b_1 are the same as the first two characters of b_2 . Find the partition of S induced by \mathcal{R} .

Exercise n°27

Let B be the set of all finite strings of 0's and 1's. let \mathcal{R} be the equivalence relation on B defined as follows:

For strings b_1 and b_2 ; $b_1 \mathcal{R} b_2$ just in case the number of 1's in b_1 is the same as the number of 1's in b_2 . Find the partition of B induced by \mathcal{R} .

Exercise n°28

Let \mathcal{R} be the equivalence relation on Z defined as follows:

For integers m and n; $m\mathcal{R}n$ just in case m=n or m=-n. Find the partition of Z induced by \mathcal{R} .

Exercise n°29

Let B be the set of all finite strings of 0's and 1's. for $i \ge 0$, let A_i be the set of all strings in B that have length i. Then $P = \{A_i | i \ge 0\}$ is a partition of B. Determine if 1100, 10101, 0001011 lie in [11011].

Additional exercises

Exercise n°1

What are the possible values of n given this set notation: $\{n \in Z^+ | n \text{ is a factor of } 8\}$.

Exercise n°2

Identify each of the following as true or false.

- ${3} \in {1, 3, 5, 7}$
- ${3} \subseteq {1, 3, 5, 7}$
- $\{3\} \in \{\{1\}, \{3\}, \{5\}, \{7\}\}$
- ${3} \subseteq {\{1\}, \{3\}, \{5\}, \{7\}\}}$

Exercise n°3

For all sets A, B, and C, prove that $A - (A \cap B) = A - B$. List the name of each law used.

Exercise n°4

Let set A be a set of all university of Batna 2 (UB2) employees and B is the set of teachers. Describe the following statements.

- $A \cap B$
- $A \cup B$
- A B
- B A

Exercise n°5

Illustrate the following using Venn Diagrams.

- a. $(A \cap B) A$
- b. $(A B) \cup (B A)$

Exercise n°6

What is the power set of $\{a, b, c\}$