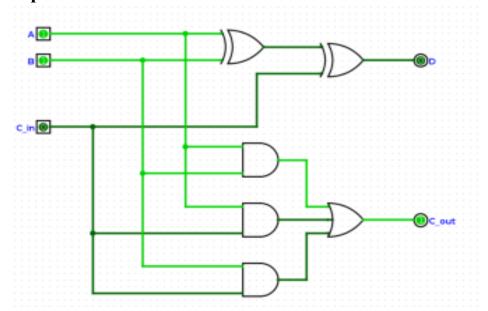
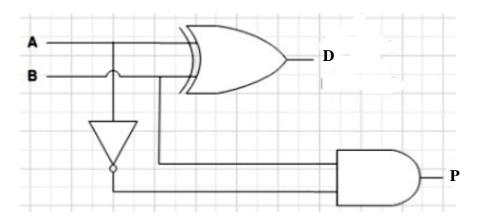

Université Mostefa Ben Boulaid- Batna 2 Faculté de Technologie


Tronc Commun-Ingénieur en Technologie Module : Structure des ordinateurs et applications (informatqiue1) Série de TP N° 5

Manipulation 1: Réalisez le schéma suivant


- 1. Tracer la table de vérité correspondante.
- 2. Que fait ce circuit ?

Manipulation 2: Réalisez le schéma suivant :

- 3. Tracer la table de vérité correspondante.
- 4. Quelle est la fonction de ce circuit ?

Manipulation 3: Réalisez le schéma suivant :

- 5. Tracer la table de vérité correspondante.
- 6. Que fait ce circuit ?

Manipulation 4: Construction de logigramme à partir d'une Table de Vérité :

- 1. Ouvrir un nouveau fichier puis sélectionner Project --> Analyser circuit.
- 2. Ajouter les variables d'entrées dans l'onglet Entrées (Inputs) et les variables de sortie dans l'onglet Sorties (Outputs).
- 3. Dans l'onglet Table, cliquer sur les "x" de les sorties de telle sorte à avoir une table qui correspond à la fonction être atteint.
- 4. Cliquer sur construire le circuit puis nommer votre circuit et activer l'utilisation des portes NAND à 2 entrées uniquement.
- 5. A partir des tables de vérité, Réalisez les circuits correspondants aux fonctions S_1 et S_2 .

a	b	c	S_1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

a	b	c	d	S ₂	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

On considère la table de vérité suivante, avec P,R,Q,S des entrées et A et B des sorties.

P	R	Q	S	A	В
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	1	1
1	1	0	0	0	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	0

Donner le circuit logique qui valide cette table.

Manipulation 5:

Soit les expressions booléennes suivantes :

1.
$$F(A,B) = A + B$$
.

2.
$$F(A,B,C) = (\overline{A}\overline{B}) + B(\overline{A}C + A\overline{C})$$

3.
$$F(A, B, C) = (A + \overline{B}). (\overline{A} + B). (\overline{A} + c)$$

4.
$$F(A, B, C, D) = \overline{A}.\overline{B}.\overline{C} + \overline{C}.D$$

- 1. Tracer les tables de vérité correspondante.
- 2. Tracer les logigrammes correspondant.