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1. Calcul vectoriel Vector Calculus
Introduction to Vectors

Before we dive into vectors, it's important to understand the distinction between scalars and vectors: 

• Scalars are quantities that have magnitude (size) only, such as distance or speed.

• Vectors are quantities that have both magnitude and direction, such as displacement, velocity or force.

• 1. Grandeur scalaire : Scalar quantity

A scalar quantity is expressed by a numerical value followed by the corresponding unit.

Exemple: the length,  mass, volume , temperature, time, work, voltage, density, resistance,etc …. 

2. Grandeur vectorielle : Vector quantity 

A quantity that has magnitude as well as direction is called a vector.

A directed line segment AB, having an origin A and an end B, defined by :

✓Its origin

✓ Its direction

✓Its magnitude ( length)   

Vectors are often represented graphically as arrows. The length of the arrow represents the vector's 
magnitude, and the direction of the arrow indicates its direction.

like displacement, velocity, acceleration, force, weight, momentum, electric field intensity etc…..
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Somme de vecteurs/ Vector Addition
Operations sur les vecteurs /Operations on vectors :

The sum of two vectors 𝑢 and Ԧ𝑣 is another vector Ԧ𝑆 defined by 
- vectorial sum of multiple vectors:

𝑢O

Ԧ𝑣

O

Ԧ𝑆𝜃

Ԧ𝑆 = 𝒗 + 𝑢 + 𝑤 + Ԧ𝑧

Subtraction of  Vectors
Vector subtraction is not a commutative operation : 

𝐷 = 𝑢 − Ԧ𝑣 ≠ Ԧ𝑣 − 𝑢.

Ԧ𝑆 = 𝑢 + Ԧ𝑣 = Ԧ𝑣 + 𝑢. So it is a commutative operation.

𝑽𝟏
O

-𝑽𝟐𝐷

𝜽

𝑽𝟐
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Scalar Multiplication

Vectors can be multiplied by scalars to change their magnitude.
Multiplying a vector by a positive scalar scales its magnitude, while 

multiplying by a negative scalar reverses its direction.

• the Product of a vecteur  Ԧ𝑣 by a scalaire α is a vecteur noted α Ԧ𝑣 .

Note that, α Ԧ𝑣 is also a vector, collinear to the vector Ԧ𝑣. 

𝑢 = α Ԧ𝑣 𝒗
O

𝒖

O
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Vector Components :

• Let A and B be two points in a Cartesian coordinate system

A( xa , ya ) et B( xb ,yb ) So the vector components 𝐴𝐵 : 

< xb-xa , yb-ya >  ou bien:    
xb−xa
yb−yb

• The vector 𝐴𝐵 is written as:

𝐴𝐵 = (xb – xa) Ԧ𝑖 + (yb – ya) Ԧ𝑗 = a Ԧ𝑖 + bԦ𝑗

• The length (magnitude) or module of the vector 𝐴𝐵 is written:

𝐴𝐵 = 𝑎2 + 𝑏2
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Vecteur unitaire        Unit vectors 

• The unit vector of the vector 𝐴𝐵 is obtained by dividing this vector by its 
magnitude

Ԧ𝜇 =  
𝐴𝐵

𝐴𝐵

B

Ԧ𝜇

A

Unit vectors are vectors with a magnitude of 1 and are often used to specify 
direction. In three dimensions, the unit vectors along the x, y, and z axes are 

denoted as Ԧ𝑖, Ԧ𝑗, and 𝑘,  respectively.
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I-2   Produit scalaire / Dot product

a/ Geometrical interpretation of scalar product

• Let u et v be two vectors forming a geometric angle θ, the real (scalar) 

number is called the dot product and is denoted as u . v :

𝑢 . Ԧ𝑣 =  𝑢 . Ԧ𝑣 . cos 𝜃

It is the product of the magnitude of v By projecting u onto the direction of 

v : ( u cos θ).
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b/ Expression analytique du Produit scalaire
Analytical expression of the Dot product

Let: 𝑢 = <X, Y, Z >  et Ԧ𝑣 = <X’, Y’, Z’> 

The analytical expression of the scalar product 𝑢 . Ԧ𝑣 is given by:

𝑢 . Ԧ𝑣 = XX’ +YY’ + ZZ’

In fact: 

(XԦ𝑖 + YԦ𝑗 + Z𝑘 ).( X′Ԧ𝑖 + Y′Ԧ𝑗 + Z’𝑘) = XX’ + YY’ + ZZ’

Since : 

Ԧ𝑖 . Ԧ𝑖 = Ԧ𝑗 . Ԧ𝑗 = 𝑘 . 𝑘 =   1        &      Ԧ𝑖 . Ԧ𝑗 = Ԧ𝑗 . 𝑘 = 𝑘 . Ԧ𝑖 = 𝑘 . Ԧ𝑗 = Ԧ𝑖 . 𝑘 = 0
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I-3 / Produit vectoriel / Cross product

a- Geometric expression of the Cross product 

The Cross product of two vectors u and  v noted 𝑢 ᴧ Ԧ𝑣 is a vector 𝑊
perpendicular (orthogonal) to both of them, and defined by:

𝑢 ᴧ Ԧ𝑣 =  𝑢 . Ԧ𝑣 .sin 𝜃

The cross product is another mathematical operation involving vectors, which 
results in a vector as its output, unlike the dot product which results in a scalar.

𝑊
plan

O 𝑢

Ԧ𝑣

𝑢
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b/ Analytical expression of the cross product 

𝑢 ᴧ Ԧ𝑣 = (xԦ𝑖 + yԦ𝑗 + z𝑘 ) ᴧ ( x′Ԧ𝑖 + y′Ԧ𝑗 + z’𝑘) 

= ( yz’ – zy’)Ԧ𝑖 – (xz’ – x’z)Ԧ𝑗 + (xy’ – x’y)𝑘

Such as:

Ԧ𝑖 ᴧ Ԧ𝑖 = Ԧ𝑗 ᴧ Ԧ𝑗 = 𝑘 ᴧ 𝑘 =0 et     Ԧ𝑖 ᴧ Ԧ𝑗 = 𝑘 ; Ԧ𝑗 ᴧ𝑘 = Ԧ𝑖 ;   𝑘 ᴧ Ԧ𝑖 =Ԧ𝑗

O
𝑘

Ԧ𝑗

Z

𝑌

𝑋

Ԧ𝑖
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𝑊 =
Ԧ𝑖 Ԧ𝑗 𝑘
𝑥 𝑦 𝑧

𝑥′ 𝑦′ 𝑧′

= Ԧ𝑖
𝑦 𝑧

𝑦′ 𝑧′ − Ԧ𝑗
𝑥 𝑧
𝑥′ 𝑧′

+ 𝑘
𝑥 𝑦

𝑥′ 𝑦′

𝑊 = ( yz’ – zy’)Ԧ𝑖 – (xz’ – x’z)Ԧ𝑗 + (xy’ – x’y)𝑘

Méthode matricielle /Matrix method :
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I-4 / Systèmes usuels de coordonnées
I-4 / Usual coordinate systems

a / Coordonnées Cartésiennes 
a / Cartesian Coordinates

𝑂𝑀 =  xԦ𝑖 + yԦ𝑗 + z𝑘

M

O

Ԧ𝑖

Ԧ𝑗𝑘

Z

X

Y

x

y

z

M’
Ԧ𝑖

Ԧ𝑗

Y

X

M

x

y

O

𝑂𝑀 =  xԦ𝑖 + yԦ𝑗

In the  plan                                                          In the space
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b/ Coordonnées polaires
b/ Polar coordinates

xx

θ

Ԧ𝑖

Ԧ𝑗

y

y

𝒆θ 𝒆r

r

Polar coordinates are linked to Cartesian coordinates by:

x = r cos 𝜃 r = x2 + y2

y = r sin 𝜃 tan 𝜃 = 
y

x

M (r ,θ)                            the polar base is (er , eθ ).

𝑂𝑀 = r Ԧ𝑒r
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Ԧ𝑒r =  cos 𝜃 𝑖 +  sin 𝜃 Ԧ𝑗

Ԧ𝑒Ѳ = -sin 𝜃 𝑖 + cos 𝜃 Ԧ𝑗

xxԦ𝑖

Ԧ𝑗

y

y

𝒆θ 𝒆r

r

Ԧ𝑒θ
θ

θ
𝒆r
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c / Coordonnées cylindriques

c / Cylindrical coordinates

M (r ,θ, z)                       The cylindrical base  ( Ԧ𝑒r , Ԧ𝑒θ , Ԧ𝑒z ).
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Cylindrical coordinates are linked to Cartesian coordinates by:

x = r cos θ r = x2 + y2

y = r sin 𝜃 tan 𝜃 = 
y

x

z = z                                              z = z

The position vector in cylindrical coordinates is given by:

𝑂𝑀 =  𝑂𝐻 + 𝐻𝑀

𝑂𝑀 = r Ԧ𝑒r  + z Ԧ𝑒z
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d / Coordonnées sphériques
d / Spherical coordinates

M (r ,θ, φ)                           the spherical base is ( Ԧ𝑒r , Ԧ𝑒θ , Ԧ𝑒φ )
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M (r ,θ, φ)                        the spherical base is ( Ԧ𝑒r , Ԧ𝑒θ , Ԧ𝑒φ ).

Spherical coordinates are linked to Cartesian coordinates by :

x = OH cos φ x = r sin Ѳ cos φ
y = OH sin φ avec OH =  r sin Ѳ y = r sin φ sin Ѳ

z = r cos Ѳ z = r cos Ѳ

The position vector of point M in the spherical base is given by :

𝑂𝑀 = r Ԧ𝑒r
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Chapitre II Cinématique du point matériel
Chapter II: Kinematics of particles

• II-1 /  Généralités                                                  General concepts 

• II-2 /  Repérage d’un mobile                            Tracking of a Mobile Object(locating a mobile)

• II-2–a/ Vecteur position                                       - Position vector

• II-2–b/ Vecteur vitesse                                         - Velocity vector

• II-2–c/ Vecteur accélération - Acceleration vector

• II-3/ Expression du Vecteur vitesse et accélération en coordonnées cartésiennes

Expression of the Velocity and Acceleration Vector in Cartesian Coordinates

• II-4/ Expression du Vecteur vitesse et accélération en coordonnées polaires

Expression of the Velocity and Acceleration Vector in Polar Coordinates

• II-5/ Expression du Vecteur vitesse et accélération en coordonnées cylindriques 

Expression of the Velocity and Acceleration Vector in Cylindrical Coordinates

• II-6/ Repère de Frenet                                         Frenet frame
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II-1 / Generalities 

• The word 'kinematics' comes from the Greek word 'Cinema,' which means 
movement.

• Kinematics is the study of the motion of a solid, determining its position, 
velocity, and acceleration. 

• Kinematics is the branch of mechanics that examines and describes the motion 
of an object considered infinitesimally small, referred to as a point particle, 
denoted as M, with a mass denoted as m. 
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II-2 /  / Locating a Mobile 

• The set of points described by point M over time is called its trajectory.

• On its trajectory, point M has a velocity vector 𝑉 and an acceleration vector 
Ԧ𝑎 . 

•  To study the motion of a point, we establish a frame of reference, and for 
that purpose, we define a reference frame or space.

Point M could be an airplane, for example, and thus we can locate the position 

of our airplane using the position vector 𝑂𝑀.
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• A reference frame is defined as a set of points whose distances remain 
constant over time. It is typically characterized by a point O, chosen as the 
origin of the frame conventionally, and equipped with an orthonormal basis.

• To define the position of a point in space, an observer will use a reference 
frame, a coordinate system linked to a clock to measure time.

• This space-time reference frame is called a "reference frame" or simply 
"frame of reference”.
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• The Earth reference frame is the most commonly used reference frame: it is 
centered at a point on Earth, and its axes are tied to the Earth's rotation.

• The geocentric reference frame has its origin at the center of mass of the 
Earth, and its axes are defined with respect to three stars distant enough to 
appear stationary. Therefore, it is not fixed to the Earth in its rotational 
motion around its poles.

• The Keplerian reference frame (or heliocentric) is a reference frame 
centered on the center of mass of the Sun, with its axes parallel to those of 
the Copernican reference frame.

Soleil

Terre

Référentiel Kepler

Référentiel géocentrique
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a/ Position vector

• The position vector is expressed in various coordinate systems as follows:

• Cartesian Coordinates 𝑂𝑀 =  xԦ𝑖 + yԦ𝑗 + z𝑘

• Polair Coordinates 𝑂𝑀 = r Ԧ𝑒r

• Cylindrical Coordinates 𝑂𝑀 = r Ԧ𝑒r  + z Ԧ𝑒z

• Spherical Coordinates 𝑂𝑀 = r Ԧ𝑒r



Pr L.Abdelhamid

The trajectory equation

• The mathematical relationship that connects the coordinates independently of 

time is called the trajectory equation.

• The path followed by the particle in space as it moves is called its trajectory. It 

can be described using equations of motion.

• y = f(x) ou r = f(Ѳ)

• Example of equation of a cercle is : 𝑥2 + 𝑦2 = 𝑅2

• Parametric equations or Time equations : It is the relationships that provide us

distances as functions of time.

X =f(t ) ; y = g(t) ; z = h(t);
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b/ Velocity vector

• Velocity is a vector quantity that provides information about the change in 
position of a point with respect to time. Velocity is the rate of change of position 
with respect to time. with units of m/s (meters per second).

• By analyzing the velocity vector, you can determine the direction and sense of 
motion, while the displacement vector provides information about the 
magnitude of the change in position. These concepts are fundamental in 
understanding the kinematics of a particle's motion.

• It must express the instantaneous direction of the point's displacement, the 
sense of the displacement, and the magnitude of the variation of this 
displacement.

• Velocity is a vector quantity,  its direction is tangent to the trajectory.
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Average velocity:
is the displacement of an object divided by the time:

It is the ratio of the displacement to the time it takes to 
cover that displacement.

𝑉m  =  
𝑀1𝑀2

𝑡2−𝑡1
= 

𝑂𝑀2 − 𝑂𝑀1

∆t
M2

M1

o

𝑉(𝑡)

y

x
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𝑉(t) = 𝑙𝑖𝑚
∆t→0

𝑂𝑀 𝑡+∆t − 𝑂𝑀 (𝑡)

∆t
= 

𝑑𝑂𝑀

𝑑𝑡

We note that the velocity is the rate of change of position with respect to time

Instantaneous velocity: It is the velocity at a specific moment t. It can
be defined as the average velocity between the position M1 of the point at time t
and the position M2 of the same point at time (t + ∆t), where ∆t represents a very
small duration.
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The average velocity : of a point M approaches the instantaneous

velocity at time t as ∆t approaches 0. As M2 approaches M1, the chord M1M2
approaches the tangent to the trajectory at point M, from which the velocity
vector becomes a tangent vector to the trajectory at the point in question.

(Path followed
by the point M)
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c/ acceleration vector 

• Just as the velocity vector informs us about the change in the position
vector over time, the acceleration vector informs us about the changes in
the velocity vector over time.

• The acceleration vector represents the first derivative with respect to time of
the velocity vector or the second derivative of the position vector.

Ԧ𝑎 𝑡 = lim
𝑡′→𝑡

Ԧ𝑣′ − Ԧ𝑣

ƴ𝑡 − 𝑡
= lim

𝑡′→𝑡

∆ Ԧ𝑣

∆𝑡
=

𝑑 Ԧ𝑣

𝑑𝑡
; Ԧ𝑎 𝑡 =

𝑑 Ԧ𝑣

𝑑𝑡
=

𝑑2𝑂𝑀

𝑑𝑡2
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The three kinematic equations, which are the position vector𝑂𝑀 (t), the velocity

𝑉 (t) and the acceleration Ԧ𝑎 (t), are mathematical functions that can be derived from
each other through differentiation and integration.

The velocity

𝑉(t)

The position 

𝑂𝑀 (t)

The acceleration Ԧ𝑎
(t)

IntegrationIntegration

differentiation differentiation
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II- 3 / Expression of the velocity vector in Cartesian 
coordinates

• Le vecteur vitesse en coordonnées cartésiennes est donné par :

𝑉(t) =  
𝑑𝑂𝑀

𝑑𝑡
= 

𝑑

𝑑𝑡
(xԦ𝑖+ yԦ𝑗+z𝑘)

𝑉(t) =  
𝑑𝑥

𝑑𝑡
Ԧ𝑖 + 

𝑑𝑦

𝑑𝑡
Ԧ𝑗 + 

𝑑𝑧

𝑑𝑡
𝑘

𝑉(t) =  Vx Ԧ𝑖 +VY Ԧ𝑗 + VZ 𝑘 𝑉(t) =  ሶ𝑋 Ԧ𝑖 + ሶ𝑌 Ԧ𝑗 + ሶ𝑍𝑘

• Velocity in Cartesian coordinates is the rate of change of position with respect
to time. It can be expressed as the vector (vx, vy, vz), where each component
represents the rate of change along the respective axis.

• Since the Cartesian basis is a fixed basis over time, its unit vectors are
independent of time, and their derivative with respect to time is zero.
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II-4 /Expression of the acceleration vector in Cartesian 
coordinates

• The acceleration vector in Cartesian coordinates is given by:

a(t) =  
dV

dt
= 

d

dt
(Vx Ԧi+ Vy Ԧj+Vz k)

Since the Cartesian basis is a fixed basis over time, its unit vectors are
independent of time, and their derivative with respect to time is zero.

a(t) =  ax Ԧ𝑖+aY Ԧ𝑗+ aZ 𝑘 a(t) =  ሷ𝑋 Ԧ𝑖 + ሷ𝑌 Ԧ𝐽 + ሷ𝑍 k
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II-5/ Expression of the acceleration vector in polar 
coordinates

• V(t) =  
dOM

dt
with: 𝑂𝑀 in polar coordinates 𝑂𝑀 = r Ԧ𝑒r   

• V(t) = 
𝑑

𝑑𝑡
( r Ԧ𝑒r ) = ሶ𝑟 Ԧ𝑒r +r

𝑑

𝑑𝑡
Ԧ𝑒r

Mathematical Reminder :

The rule for the derivative of a composite function is:

f =f(y) et y= f (x) 

𝑑𝑓

𝑑𝑥
= 

𝑑𝑓

𝑑𝑦
. 

𝑑𝑦

𝑑𝑥

In our case, y represents the angle θ, and x represents time
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SO :
𝑑

𝑑𝑡
Ԧ𝑒r  = 

𝑑

𝑑𝜃
Ԧ𝑒r . 

𝑑𝜃

𝑑𝑡
=  ሶ𝜃

𝑑

𝑑𝜃
Ԧ𝑒r                  

• Ԧ𝑒r =  cos 𝜃 𝑖 +  sin 𝜃 Ԧ𝑗 ;   
𝑑 Ԧ𝑒𝑟

𝑑𝜃
=  -sin 𝜃 𝑖 + cos 𝜃 Ԧ𝑗 =  Ԧ𝑒Ѳ

• Ԧ𝑒Ѳ = -sin 𝜃 𝑖 + cos 𝜃 Ԧ𝑗 ;   
𝑑 Ԧ𝑒

Ѳ

𝑑𝜃
=  = - cos 𝜃 𝑖 - sin 𝜃 Ԧ𝑗 = - Ԧ𝑒r 

• 𝑑

𝑑𝑡
Ԧ𝑒r = ሶ𝜃 Ԧ𝑒Ѳ  et        :    

𝑑

𝑑𝑡
Ԧ𝑒θ = − ሶ𝜃 Ԧ𝑒r

• So, the expression for velocity in polar coordinates becomes:

V(t) = 
𝑑

𝑑𝑡
( r Ԧ𝑒r ) = ሶ𝑟 Ԧ𝑒r +r

𝑑

𝑑𝑡
Ԧ𝑒r

𝑽(t) = ሶ𝒓 𝒆r + r ሶ𝜽 𝒆Ѳ
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II-6/Expression of the acceleration vector in polar 
coordinates

• a(t) =
dV

dt
=

𝑑

𝑑𝑡
( ሶ𝑟 Ԧ𝑒r + r ሶ𝜃 Ԧ𝑒Ѳ )

• a(t) = ሷ𝑟 Ԧ𝑒r + ሶ𝑟
𝑑

𝑑𝑡
Ԧ𝑒r + ሶ𝑟 ሶ𝜃 Ԧ𝑒Ѳ + r ሷ𝜃 Ԧ𝑒Ѳ + r ሶ𝜃

𝑑

𝑑𝑡
Ԧ𝑒θ

• a(t) = ( ሷ𝑟 - r ሶ𝜃2 ) Ԧ𝑒r + ( 2 ሶ𝑟 ሶ𝜃 + r ሷ𝜃 ) Ԧ𝑒θ
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II-7/ expressions of the position , velocity and 
acceleration vector   in cylindrical coordinates : 

Position vector :   𝑂𝑀 = r Ԧ𝑒r + z Ԧ𝑒z      ou Ԧ𝑒z = 𝑘

Velocity vector :      𝑉(t) =  
𝑑𝑂𝑀

𝑑𝑡

→ 𝑉(t) = 
𝑑

𝑑𝑡
( r. Ԧ𝑒r + z𝑘)= ሶ𝑟 Ԧ𝑒r +𝑟

𝑑

𝑑𝑡
Ԧ𝑒r+ ሶ𝑧 𝑘

With :         
𝑑

𝑑𝑡
Ԧ𝑒r = ሶ𝜃 Ԧ𝑒Ѳ  et         

𝑑

𝑑𝑡
Ԧ𝑒θ = − ሶ𝜃 Ԧ𝑒r

So the expression of the velocity in cylindrical coordinates is :

𝑉(t) = ሶ𝑟 Ԧ𝑒r + r ሶ𝜃 Ԧ𝑒Ѳ + ሶ𝑧 𝑘
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Acceleration Vector :

Ԧ𝑎(t) =  
𝑑𝑉

𝑑𝑡
= 

𝑑

𝑑𝑡
( ሶ𝑟 Ԧ𝑒r + r ሶ𝜃 Ԧ𝑒Ѳ) = ሷ𝑟 Ԧ𝑒r + ሶ𝑟

𝑑

𝑑𝑡
Ԧ𝑒r + ሶ𝑟 ሶ𝜃 Ԧ𝑒Ѳ + r ሷ𝜃 Ԧ𝑒Ѳ + r ሶ𝜃

𝑑

𝑑𝑡
Ԧ𝑒θ + ሷ𝑧 𝑘

Ԧ𝑎(t) = ( ሷ𝑟 - r ሶ𝜃2 ) Ԧ𝑒r + ( 2 ሶ𝑟 ሶ𝜃 +  r ሷ𝜃 ) Ԧ𝑒θ + ሷ𝑧𝑘
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= V is tangent to the trajectory

is directed towards the center of curvature     

of the trajectory.

II-8/Repère de Frenet
II-8/ Frenet frame

It is an orthonormal moving frame ( M ,  T , N )

T Being a unit vector tangent to the trajectory.
N Being a unit vector normal to the trajectory, directed towards the center
of curvature of the trajectory. At every point on the trajectory, one can
define a circle (locally, a segment of the curve always resembles, more or
less, a circle) with a radius R, which is the radius of curvature of the
trajectory.
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• aT =    
𝑑𝑣

𝑑𝑡
is the value of the tangential acceleration 

• It can be positive, negative, or zero.

• aN = V2 /R     is The value of the normal acceleration.

• It can be positive or zero.

• The radius of curvature of the trajectory is denoted by R.

• Ԧ𝑎 =  Ԧ𝑎n  +  Ԧ𝑎t d’où a2 = an
2 +  at

2
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Chapitre III : Etude des mouvements usuels
Chapter III : Study of usual movements

III-1 / Mouvement rectiligne Rectilinear motion 

III-1–a/ Mouvement rectiligne uniforme (MRU) Uniform rectilinear motion (URM)

III-1–b/ Mouvement rectiligne uniformément varié Uniformly varied rectilinear motion 

III-2 / Mouvement circulaire Circular movement

III-2–a/ Mouvement circulaire uniforme Uniform circular motion

III-2–b/ Mouvement circulaire uniformément varié Uniformly varied circular motion

III-3 / Mouvement rectiligne sinusoidal                                         Sinusoidal rectilinear motion

III-4 / Mouvement parabolique Parabolic movement
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A material point is in uniform rectilinear motion if its trajectory is a

straight line and its velocity vector is constant. V=V0= ሶ𝑋 = constant, so the

acceleration vector is zero (a =
𝑑𝑣

𝑑𝑡
= 0).

III-1 Mouvement Rectiligne : Rectilinear motion 

A material point M is in rectilinear motion if its trajectory is a straight line 

along a single axis of the reference frame 𝑂, Ԧ𝑖, Ԧ𝑗, 𝑘 , where the motion of 

point M takes place. Therefore, we only need a single parameter, such as 'ox,' 

to define the position of point M.

III-1-a/Mouvement rectiligne uniforme (MRU):Uniform rectilinear motion (URM)
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Equation horaire du mouvement : Equation of motion

Equations of Motion: To describe uniformly rectilinear

motion, we can use a set of equations that relate the initial

velocity, final velocity, acceleration, displacement, and time.

The most commonly used equation is:

We choose the X-axis as the rectilinear reference.

V=V0= ሶ𝑋 = constante donc 𝑉 𝑡 = 𝑉0Ԧ𝑖 & a =0

→ 𝑉 = 𝑉0 =
𝑑𝑥

𝑑𝑡
→ 𝑑𝑥 = 𝑉0𝑑𝑡֜ න

𝑥0

𝑥

𝑥 = න
0

𝑡

𝑉0𝑑𝑡

The equation of motion for uniform rectilinear motion is:

֜ 𝒙 𝒕 = 𝑽𝟎𝒕 + 𝒙𝟎

With 𝒙𝟎 being an integration constant determined from the initial

conditions..
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Diagrammes du mouvement(MRU)/ Motion Diagrams

𝑉(𝑡)

𝑡0

𝑉 = 𝑐𝑠𝑡𝑒

(MRU) : The accleration : a = 0 m/s2, - The velocity : V=V0= cste

𝑡

𝑎(𝑡)

0

𝑎 = 0

𝑡

𝑥(𝑡)

0

𝑥 𝑡 = 𝑉0𝑡 + 𝑥0

𝑥0 = 0

𝑉 < 0

the displacement as a function of time: 𝑥 𝑡 = 𝑉0𝑡 + 𝑥0

These diagrams are a way to visually represent the motion of objects or particles over
time. Motion diagrams can be particularly useful in physics to help understand and
analyze the behavior of objects in motion. There are several types of motion diagrams:

1/ Displacement-Time Diagram (Position-Time Diagram)

2/ Velocity-Time Diagram (Speed-Time Diagram)

3/ Acceleration-Time Diagram
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III-1-b Mouvement rectiligne uniformément varie (MRUV): 
Uniformly varied rectilinear motion(UVRM) 

• The motion of a material point is rectilinear uniformly varied if its trajectory 
is a straight line, and its acceleration is constant. Ԧ𝑎 = 𝑎0Ԧ𝑖 = 𝑐𝑠𝑡𝑒

• Considering the initial conditions:(t=0, V(0)= 𝑉0 ).

• Ԧ𝑎 =
𝑑𝑉

𝑑𝑡
֜ 𝑑𝑉 = 𝑎0Ԧ𝑖 𝑑𝑡 ֜ 𝑉0׬

𝑉
𝑑𝑉 = 0׬

𝑡
𝑎0Ԧ𝑖 𝑑𝑡

• ֜ 𝑉 𝑡 = (𝑎0 𝑡 + 𝑉0)Ԧ𝑖

• This yields the equation for instantaneous velocity ∶ 𝑉 𝑡 = (𝑎0 𝑡 + 𝑉0)



Pr L.Abdelhamid

Equation horaire du mouvement :
Equation of motion as a function of time.

• Considering the initial conditions: (pour t=0, 𝑥(0) = 𝑥0 et V(0) = 𝑉0). 

And considering the equation :

𝑉 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡
֜ 𝑥0׬

𝑥
𝑑𝑥 𝑡 = 0׬

𝑡
𝑉 𝑡 𝑑𝑡 = 0׬

𝑡
(𝑎0 𝑡 + 𝑉0)𝑑𝑡

• The equation of Uniformly varied rectilinear motion is(UVRM) : 

• 𝑥 𝑡 = (
1

2
𝑎0𝑡2 + 𝑉0𝑡 + 𝑥0)

So the equations of UVRM are : ൞

𝑎 = 𝑎0= 𝑐𝑠𝑡𝑒

𝑉 𝑡 = 𝑎0 𝑡 + 𝑉0

𝑥 𝑡 =
1

2
𝑎0𝑡2 + 𝑉0𝑡 + 𝑥0
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The diagrams for uniformly accelerated rectilinear motion related to
acceleration, velocity, and displacement are represented in the following
figure:

𝑎(𝑡)

𝑡0

𝑎 = 𝑐𝑠𝑡𝑒

𝑡

𝑉(𝑡)

0

𝑉 𝑡 = 𝑎0𝑡 + 𝑉0

𝑉0 = 0

𝑎 < 0

𝑥(𝑡)

𝑡0

𝑥0
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The uniformly accelerated rectilinear motion is either accelerated or decelerated 
(retarded).
The motion is uniformly accelerated if the dot product Ԧ𝑣 . Ԧ𝑎 > 0  is positive
The motion is uniformly decelerated if the dot product Ԧ𝑣 . Ԧ𝑎 < 0  is negative
The sign of the acceleration vector Ԧ𝑎 alone is not sufficient.

It is possible to obtain a relationship between position, velocity, and 
acceleration independent of time.

V = a0 t + v0 ֜ t = (v – v0 ) / a0

By replacing t with its expression in the equation for position x(t), we obtain:

2 a0 (x – x0 ) = 𝑣𝑓
2 - 𝑣0

2
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Mouvement circulaire  / circular motion

• In circular motion, the trajectory of point M is a circle with center O and 
radius r. It is logical to choose the origin of the coordinate system as the 
center O of the circle, and the polar coordinate system is well-suited for this 
type of motion.With r = constant    and  θ = f(t)

• The equations of motion :  

• 𝑂𝑀 = r Ԧ𝑒r

• V(t) = 
𝑑

𝑑𝑡
( r Ԧ𝑒r ) = r

𝑑

𝑑𝑡
Ԧ𝑒r = r ሶ𝜃 Ԧ𝑒Ѳ

• a(t) = - r ሶ𝜃2 Ԧ𝑒r + r ሷ𝜃 Ԧ𝑒θ

θ

𝑂

𝒆r𝒆θ

Ԧ𝑖 𝑋

Ԧ𝑗

M

R

𝑌

𝑦

𝑥

𝑉

𝒂𝑻

𝒂𝑵
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Comparaison entre les deux expressions de l’accélération du MC dans la 
base de Frenet et dans la base polaire.

Comparison between the two expressions of the acceleration of the CM in 
the Frenet basis and in the polar basis.

Frenet basis : Ԧ𝑎 = 𝑎𝑇 . 𝑇 + 𝑎𝑁. 𝑁

• 𝑎𝑇 =
𝑑𝑣

𝑑𝑡
et 𝑎𝑁 =

𝑣2

𝑅
Avec : 𝑁 = −𝑒𝑟 et  𝑇 = 𝑒𝜃

• CM  polar basis : Ԧ𝑎 = R ሷ𝜃𝑒𝜃 − 𝑅 ሶ𝜃2𝑒𝑟

By identification : 

• 𝑎𝑇 = R ሷ𝜃 et  𝑎𝑁 = 𝑅 ሶ𝜃2

• or 𝑉 = 𝑅 ሶ𝜃𝑒𝜃 = 𝑅𝜔𝑒𝜃 &    𝑉 = 𝑅𝜔 → 𝜔 =
𝑉

𝑅

• 𝑑𝑉

𝑑𝑡
= 𝑅 ሶ𝜔 = 𝑅 ሷ𝜃 → 𝑎𝑇 =

𝑑𝑉

𝑑𝑡
et 

• 𝑎𝑁 = 𝑅
𝑉

𝑅

2
=

𝑉2

𝑅
.

θ

𝑂

𝒆r

𝒆θ

Ԧ𝑖 𝑋

Ԧ𝑗

M

R

𝑌

𝑦

𝑥

𝑉

𝑎𝑇

𝑎𝑁

𝑁

𝑇
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Mouvement circulaire uniforme / Uniform Circular Motion

• The  circular motion is uniform if the  angular speed is constant  w = ሶ𝜃 = Cste 

𝑂𝑀 = r Ԧ𝑒r

𝑉(t) = r ሶ𝜃 Ԧ𝑒Ѳ = r ѡ Ԧ𝑒Ѳ

Ԧ𝑎 = - r ሶ𝜃2 Ԧ𝑒r

ѡ = ሶθ = Cste  ֜   θ  = wt + θ0 = ሶθt + θ0

With the angular velocity ω being constant, the tangential component of the
acceleration vector is zero, leaving only the normal component. It is the
normal component that 'causes rotation,' meaning it informs us about
changes in the direction of the velocity vector, not its magnitude, which
remains constant. Therefore, even in uniform motion (with constant V and ω),
this acceleration necessarily exists.

𝑽

𝑂

𝑅
𝑉
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Mouvement circulaire uniformément varié
A circular motion is uniformly accelerated if the angular acceleration is a constant. 
ሷθ = Cste 

𝑂𝑀 = 𝑅 𝑒𝑟

𝑉 =
𝑑𝑂𝑀

𝑑𝑡
= R

𝑑 𝑒𝑟

𝑑𝑡
= 𝑅 ሶ𝜃𝑒𝜃

Ԧ𝑎 = −𝑅 ሶ𝜃2𝑒𝑟 + R ሷ𝜃𝑒𝜃

With               ሶθ = ሷθ0 t + ሶθ0 

θ = 
𝟏

𝟐
ሷθ0 t2 + ሶθ0 t + θ0 

A uniformly accelerated circular motion is either accelerated or decelerated.

UCAM (Uniformly Accelerated Circular Motion) if the dot product ሶ𝜃 . ሷ𝜃 >0

UCRM (Uniformly Decelerated Circular Motion) if the dot product ሶ𝜃 . ሷ𝜃 <0
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Mouvement Rectiligne Sinusoïdal/ Simple Harmonic Motion(SHM)

• The motion of a material point is rectilinear sinusoidal if its equation of 
motion can be written in the form: 𝒙 𝒕 = 𝑿𝒎 𝐬𝐢𝐧(𝝎𝒕 + 𝝋)

ou 𝒙 𝒕 = 𝑿𝒎 𝐜𝐨𝐬(𝝎𝒕 + 𝝋)

• 𝑋𝑚: Amplitude . 

• X : instantaneous position, it varies between two extreme values −𝑋𝑚 𝑒𝑡
+ 𝑋𝑚.

• 𝜔 : Pulsation of the motion, its unit is radians per second.

• 𝜑: Initial phase, its unit is radians. 

• (𝜔t + 𝜑) : Instantaneous phase, its unit is radians.
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• The velocity:  By differentiating the time equation, we obtain the expression 
for instantaneous velocity:

• 𝒗 𝒕 =
𝒅𝒙(𝒕)

𝒅𝒕
= ሶ𝒙 𝒕 = 𝝎𝑿𝒎 𝐜𝐨𝐬(𝝎𝒕 + 𝝋)

• The velocity varies between two extreme values : ± 𝜔𝑋𝑚

• The acceleration :By differentiating the velocity we obtain the expression for 
instantaneous acceleration : 

• 𝒂 𝒕 =
𝒅𝒗(𝒕)

𝒅𝒕
= ሷ𝒙 𝒕 = −𝝎𝟐𝑿𝒎 𝐬𝐢𝐧(𝝎𝒕 + 𝝋)

• ሷ𝒙 𝒕 = −𝝎𝟐𝒙(𝒕) d’où    ሷ𝒙 𝒕 + 𝝎𝟐𝒙(𝒕) = 0  

• The period T is the constant time interval that separates two consecutive 
passages of the mobile at the same point.

• A motion is said to be periodic when it repeats itself exactly at identical time 
intervals (the period).
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• From time t to t + T, the phase has increased by 2π and retains its value.

• W[(t +T) +ϕ]  =    Wt + ϕ + 2π   ֜ WT = 2π    ֜ T  =  
2π

W
( second)

• The frequency f is the number of oscillations in one second. 

• f  =  
1

T
(hertz)

• This implies that:   W  =  2π f
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SHM is a fundamental form of periodic motion where an object moves back
and forth along a straight line or oscillates around an equilibrium position.

The trajectory is a sine or cosine wave, resulting in a smooth, repetitive
motion.

T t(s)

−𝑋𝑚

+𝑋𝑚
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Mouvement parabolique: Parabolic motion

• We launch a projectile M into the air with an initial velocity 𝑉0 Making an

angle 𝛼 with the horizontal (ox), its motion takes place in the (xoy) plane,
and its trajectory is parabolic.

• To study the motion of M, we determine: its acceleration, velocity, position,
and trajectory y=f(x).

• Projectile motion is the motion of an object that is thrown or projected into
the air, moving under the influence of gravity. It follows a curved path,
known as a trajectory. This motion can be broken down into two
components: horizontal motion and vertical motion.
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We decompose the motion of M along the two axes ox and oy:

- On ox (Horizontal Motion): The horizontal motion of a projectile is 
typically uniform and unaffected by gravity. This means that there is no 
horizontal acceleration. The object moves at a constant horizontal 
velocity:         

𝑎𝑥 = 0֜𝑉0 = 𝑐𝑠𝑡𝑒֜𝑥 𝑡 = 𝑉0𝑥 𝑡 + 𝑥0

URM On ox

- On oy( Vertical Motion): The vertical motion of the projectile is
influenced by gravity. The object is subject to an acceleration due to
gravity, which is typically -9.81 m/s² on Earth. This acceleration causes
the object to accelerate downward.

𝑎𝑦 = −𝑔֜𝑦 𝑡 =
1

2
𝑎𝑡2 + 𝑉0𝑦 𝑡 + 𝑦0

𝑈𝑉𝑅𝑀 𝑜𝑛 𝑜𝑦
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ON ox :

𝑎𝑥 = ሷ𝑥 = 0֜
𝑑𝑉𝑥

𝑑𝑡
= 0 ֜ 𝑑𝑉𝑥 = 0

֜ 𝑉𝑥 = 𝑐𝑠𝑡𝑒 = 𝐶1

𝑉𝑥 = 𝑉0 𝑐𝑜𝑠𝛼 , ∀𝑡

𝑉𝑥 =
𝑑𝑥

𝑑𝑡
֜ ׬ 𝑑𝑥 = ׬ 𝑉𝑥𝑑𝑡

֜ 𝑥 𝑡 = 𝑉0 𝑐𝑜𝑠𝛼 . 𝑡 + 𝑥0

𝑡 = 0: 𝑉𝑥 0 = 𝑉0𝑐𝑜𝑠𝛼 & 𝑥0 = 0.

𝒙 𝒕 = 𝑽𝟎 𝒄𝒐𝒔𝜶. 𝒕

ON oy :

𝑎𝑦 = ሷ𝑦 = −𝑔֜
𝑑𝑉𝑦

𝑑𝑡
= −𝑔

֜ න 𝑑𝑉𝑦 = න −𝑔𝑑𝑡 ֜ 𝑉𝑦 (𝑡) = −𝑔𝑡 + 𝐶2

t=0, 𝐶2 = 𝑉𝑦 0 = 𝑉0 𝑠𝑖𝑛𝛼

֜ 𝑽𝒚 𝒕 = −𝒈𝒕 + 𝑽𝟎 𝒔𝒊𝒏𝜶

𝑉𝑦 =
𝑑𝑦

𝑑𝑡
֜ ׬ 𝑑𝑦 = ׬ 𝑉𝑦𝑑𝑡

֜ 𝑦 𝑡 = −
1

2
𝑔𝑡2 + 𝑉0 𝑠𝑖𝑛𝛼 𝑡 + 𝑦0

𝑡 = 0: 𝑦0 = 0

𝒚 𝒕 = −
𝟏

𝟐
𝒈𝒕𝟐 + 𝑽𝟎 𝒔𝒊𝒏 𝜶. 𝒕

•The time equations of motion:
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The time equations of motion are: 

• ൞

𝑥 𝑡 = 𝑉0 cos 𝛼 𝑡

𝑦 𝑡 = −
1

2
𝑔𝑡2 + 𝑉0 𝑠𝑖𝑛 𝛼 𝑡

,      𝑉 ቐ

𝑉𝑥 = 𝑉0 𝑐𝑜𝑠 𝛼

𝑉𝑦 𝑡 = −𝑔𝑡 +𝑉0 𝑠𝑖𝑛 𝛼
&     Ԧ𝑎 ቐ

0

−𝑔

• The trajectory equation: is obtained by removing time :𝒚 = 𝒇 𝒙

• 𝑥 𝑡 = 𝑉0 𝑐𝑜𝑠 𝛼 𝑡 ֜ 𝑡 =
𝑥

𝑉0 𝑐𝑜𝑠 𝛼

• We substitute t in the equation for y(t):

• 𝑦 𝑡 = −
1

2
𝑔(

𝑥

𝑉0 𝑐𝑜𝑠 𝛼
)2+𝑉0 𝑠𝑖𝑛 𝛼

𝑥

𝑉0 𝑐𝑜𝑠 𝛼

• 𝒚 𝒕 = −
𝒈

𝟐 𝑽𝟎
𝟐𝒄𝒐𝒔𝟐𝜶

𝒙𝟐 + 𝒕𝒂𝒏 𝜶 . 𝒙

• As: 𝑦 𝑡 = 𝐴𝑥2 + 𝐵𝑥 : the equation of a parabola
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• Maximum Height: The object reaches its maximum height when its vertical 
velocity becomes zero.

• 𝒉 : 𝑉𝑦 𝑡𝑝 = 0,          With 𝑡𝑝 Peak time

• 𝑉𝑦 𝑡𝑝 = −𝑔𝑡𝑝 + 𝑉0 𝑠𝑖𝑛𝛼 = 0 ֜ 𝑡𝑝 =
𝑉0 𝑠𝑖𝑛𝛼

𝑔

• 𝒉 = 𝑦 𝑡𝑝 = -
1

2
𝑔𝑡𝑝

2 + 𝑉0 𝑠𝑖𝑛𝛼 𝑡𝑝 = -
1

2
𝑔

𝑉0 𝑠𝑖𝑛𝛼

𝑔

2
+

𝑉0 𝑠𝑖𝑛𝛼 2

𝑔

• 𝒉 =
𝑽𝟎 𝒔𝒊𝒏𝜶 𝟐

𝟐𝒈

• The time at which the projectile reaches point I.

• 𝒚 𝒕𝑰 = 𝟎 ֜ −
1

2
𝑔𝑡𝐼

2 + 𝑉0 𝑠𝑖𝑛 𝛼 𝑡𝐼 = 0

• 𝒕𝑰 −
1

2
𝑔 𝑡𝐼 + 𝑉0 𝑠𝑖𝑛 𝛼 = 0 ֜ ቐ

𝒕𝟏 = 𝟎 (𝒐𝒓𝒊𝒈𝒊𝒏𝒆)

𝒕𝑰 =
2 𝑉0 𝑠𝑖𝑛𝛼

𝑔

֜ 𝒕𝑰 =
𝟐 𝑽𝟎 𝒔𝒊𝒏𝜶

𝒈
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• Range: The range is the horizontal distance the object travels before hitting 
the ground. 

• We plug tI into x(t) : 𝑥 𝒕𝑰 = 𝑉0 cos 𝛼 𝒕𝑰 = 𝑉0 cos 𝛼
2 𝑉0 𝑠𝑖𝑛𝛼

𝑔

• 𝑥 𝒕𝑰 =
2𝑉0

2 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛𝛼

𝑔

• 𝑜𝑟 ∶ 2 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛𝛼 = 𝑠𝑖𝑛2𝛼, alors : 𝑿𝑰 =
𝑉0

2 𝑠𝑖𝑛2𝛼

𝑔

• Calculation of the launch angle for which the range XI is maximum : 

• 𝑿𝑰 =
𝑉0

2 𝑠𝑖𝑛2𝛼

𝑔
is max if :  𝑠𝑖𝑛 2𝛼 = 1֜2𝛼 =

𝜋

2
֜𝛼 =

𝜋

4
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Chapitre IV : Dynamique
Chapter IV : Dynamics of particles

1. Introduction                                                                            Introduction

2. Systèmes étudiés et actions mécaniques Systems  and mechanical actions

3. Différents types de forces Types of forces

4. Lois de Newton Newton’s Laws

4.a. 1ère loi de Newton (Principe d’inertie) 1st Newton's law (Principle of inertia)

4.b. 2ème loi de Newton                                                      2nd  Newton's law

(Principe fondamental de la dynamique)                          (Fundamental principle of dynamics)

4.c.   3ème loi de Newton                                                           3rd Newton's law

(Principe des actions réciproques) (Principle of reciprocal actions)
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Chapitre IV : Dynamique
Chapter IV : Dynamics

5. Application (le pendule simple) Applications  (simple pendulum)

6. Moment d’une force                                             Moment of a force

7. Moment cinétique Angular (Kinetic) Momentum 

8. Théorème du moment cinétique (TMC) Kinetic Momentum Theoreme (KMT)

9. Analogie entre grandeurs de translation Analogy between translation and       
et de rotation                                                                               rotation quantities
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Introduction

• The kinematics of a point has allowed us to describe the motion of an object
without considering the causes; it is dynamics that connects the motion to
its causes.

• Newton established the fundamental laws of dynamics, notably the second
law, which relates force and acceleration. In other words, it allows for
connecting dynamic quantities (forces) to a kinematic quantity
(acceleration).
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Various types of forces 

• There are two main categories of forces:

• Forces of interaction at a distance: for example, gravitational forces like
weight, electromagnetic forces, and so on.……

• Contact forces: for example, frictional forces, tension in a string, reaction
from a support, and so on……
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poids d’un point matériel/ The weight of a point mass.

A point mass M with mass m is subject to its weight vector𝑊 or p , a vertical force
directed downward, with a magnitude p =mg

𝑃 = m Ԧ𝑔

The SI unit for weight is the newton (N), which is equivalent to one kilogram-meter per

second squared (1 N = 1 kg·m/s²). m is the mass of the object in kilograms (kg).

g is the acceleration due to gravity, typically approximately 9.81 m/s² near the surface of

the Earth.

The weight of an object , with mass m, is primarily due to the gravitational attraction

force exerted by the Earth on it. Weight refers to the force of gravity acting on an

object with mass. Weight is the force with which an object is pulled toward the center

of the Earth (or any other celestial body) due to gravity. It is a vector quantity, which

means it has both magnitude and direction.
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forces de contact / Contact forces

• Normal Force: The force exerted by a surface to support the weight of an object 
resting on it. It acts perpendicular to the surface 𝑅 .

• Frictional Force: The force that opposes the relative motion or tendency of 
such motion of two surfaces in contact. It can be kinetic (when objects are 
sliding past each other) or static (when objects are at rest). 

• viscous drag or drag force: when an object moves through a fluid (either a gas 
or a liquid). Viscous drag is a type of force that opposes the motion of an object 
through the fluid. This force is caused by the interaction between the object and 
the fluid, and it depends on several factors:

• Spring Force: The force exerted by a compressed or extended spring, which is 
proportional to the displacement from its equilibrium position.

• Tension Force: The force transmitted through a string, rope, cable, or any other 
type of flexible connector when it's pulled tight.
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Force de Frottement/ Frictional Force

• Frictional Force: Friction opposes the relative motion or tendency of such motion of
two surfaces in contact. It can be kinetic friction (opposing motion) or static friction
(opposing impending motion).

• kinetic friction : also known as dynamic friction, is the force that opposes the relative
motion or the tendency of such motion between two objects that are in contact and
sliding past each other. It occurs when two surfaces are in motion with respect to each
other and is generally characterized by the fact that the frictional force remains
relatively constant as long as the objects are in motion. The magnitude of kinetic
friction depends on the nature of the surfaces and the force pushing the objects
together.

𝑭𝒇 = µ𝑪 𝑹𝒏
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• Static friction: is the frictional force that prevents an object from
initiating motion when a force is applied. It opposes the force trying to set
an object in motion, keeping it at rest. The maximum static friction force is
equal to the force applied, but it adjusts itself to match the applied force
until the limit is reached. Once the applied force exceeds the maximum
static friction, the object will begin to move, and kinetic friction takes over.
Static friction is essential in keeping objects stable and preventing them
from sliding or moving unintentionally.

𝑭𝒇 = µ𝑺 𝑹𝒏
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Exemples de Coefficients de frottement statique  et cinétique           
Examples of static and kinetic friction coefficients

Matériaux µ𝑺 µ𝒄

Acier sur glace       0,1 0,05

Acier sur  acier 0,6 0,4

Bois Sur Bois 0,5 0,3

Teflon Sur Acier 0,04 0,04

Chaussure Sur glace 0,1 0,05

Pneu de voiture sur béton sec 1,0 0,7
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lois de Newton / Newton's Laws

• The principles or laws are not demonstrated; it is from the observation of a large
number of experiments that a physicist is led to formulate a law that will remain
valid until another experiment challenges it.

• Classical mechanics is built upon three laws formulated by Newton.

• A material system is a collection of material points.

• A material system is isolated when there are no external actions exerted on the
system, for example, an astronaut in space.

• A material system is pseudo-isolated when external actions acting on the system
cancel each other out (it behaves as if it were isolated). For instance, on Earth, a
system cannot be rigorously isolated because it inevitably experiences the
influence of gravity.
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vecteur quantité de mouvement
Vector momentum

The Vector momentum noted P of a materiel point whith mass m moving

with a velocity vector V in a given reference frame is defined by:

P =     m   V

The SI unit of momentum is kilogram-meters per second (kg·m/s). This unit
reflects that momentum is a product of mass and velocity.
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1ère loi de Newton (Principe d’inertie)

1st Newton's law (Principle of inertia)

First Law (Law of Inertia): An object at rest tends to stay at rest, and an object in 
motion tends to stay in motion with the same speed and in the same direction 
unless acted upon by an unbalanced external force. In other words, an object will 
not change its state of motion unless a force is applied to it.

« Dans un référentiel galiléen (R) , un système mécanique isolé ou pseudo-isolé 
est soit au repos soit en mouvement  rectiligne uniforme. »

𝑉 =  Cste ⇒ P =  m   V =  Cste ⇒
𝑑P

𝑑𝑡
= 0  ;  V= Cste = V0 ou   V =  0 (objet au repos)

This principle leads to the law of conservation of the total momentum of an 
isolated or pseudo-isolated system:

P =    P’             ⇒ m1V1 =    m2 V2 =   m3 V3

From this first law arises the fundamental principle of statics:

σF = 0
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• If a system is in equilibrium, then 𝑉 = 0  et  Ԧ𝑎 = 0    ⇒ σF = 0

• However, the reverse is not true: if σF = 0 ⇒ the system is either at rest 

or in uniform rectilinear motion (    𝑉 =  Cste ).
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2ème loi de Newton/ Newton's Second Law
(Principe fondamental de la dynamique)

(Fundamental Principle of Dynamics)

As soon as a system is subjected to external forces, it is no longer isolated. The
consequences include a change in motion, which is reflected in an alteration of
the momentum vector, which is no longer conserved.

σ F ext =  
𝑑P

𝑑𝑡
= 

𝑑

𝑑𝑡
(m VG)  =  m

𝑑V
G

𝑑𝑡
=  m Ԧ𝑎G 

σF ext = m Ԧ𝑎G
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3ème loi de Newton/Newton's Third Law of Motion.
(Principe des actions réciproques)

When two systems, S1 and S2, interact (either at a distance or through

contact), each time system S1 exerts an action (a force) Ԧ𝐹1-2 on system S2,

then system S2 exerts an action (a force) Ԧ𝐹2-1 on system S1.

These forces are equal and opposite: Ԧ𝐹1-2   =  - Ԧ𝐹2-1



Pr L.Abdelhamid

Application  (le pendule simple)
Application (the simple pendulum)

A simple pendulum consists of a point mass m attached to the free end of a
string with a length l. The mass is initially displaced from its equilibrium position
by an angle Ɵ0 , and then released with no initial velocity. Air friction is
neglected.
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To determine the equation of motion for a simple pendulum using the
Fundamental Principle of Dynamics (Newton's Second Law), we can start by
analyzing the forces acting on the mass m.

PFD  : σF ext = m Ԧ𝑎G

By projecting onto the polar basis, we have:

mgcos θ – T  =  m a er

-mgsin θ =  m a eθ

We know that in polar coordinates, the acceleration is given for circular 
motion( r = Cste )

a(t) = - r ሶ𝜃2 Ԧ𝑒r + r ሷ𝜃 Ԧ𝑒θ

With r = l , And by combining the two equations, we obtain:

ሷ𝜃 +  
𝑔

𝑙
sin 𝜃 =  0 

m

𝑃

T Ԧ𝑒𝜃

Ԧ𝑒𝑟
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The pendulum is a harmonic oscillator if the angle θ is small enough so that

sin(θ) ≈ θ, and the resulting differential equation can be linearized.

ሷ𝜃 +  
𝑔

𝑙
θ =  0   

We define:    
𝑔

𝑙
= 𝑊 ( pulsation)                        

ሷ𝜃 +  𝑊2 θ  =  0   

This is the differential equation that describes the motion of a simple pendulum.

It's a second-order nonlinear differential equation that can be solved to find the
equation of motion, which depends on the initial conditions (θ₀ and V₀).

The equation of motion for the pendulum is a second-order differential equation with
no second member, and it has the following solution:

θ(t)  =  A1 cos𝑤𝑡 + A2 sin𝑤𝑡
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The oscillations are sinusoidal (undamped harmonic oscillator) (oscillateur 
harmonique non amorti) because we have neglected air friction. 

The constants A1 and A2 are integration constants that are determined from 
the initial conditions.

At: t=0 ,     θ(t)  =   θ0 = A1 cos 0 + A2 sin 0 ⇒ A1 = θ0

At: t =0 ,   V(t) = V0 = 0 = - A1 sin 0 +  A2 cos 0 = 0         ⇒ A2 = 0

θ(t)  = θ0 cos𝑤𝑡

The period is given by :
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Moment d’une force
Torque or Moment of Force

• It is possible to express the Fundamental Principle of Dynamics in a different form 
by introducing an interesting new kinematic quantity when a system (point mass) 
rotates around a point or an axis :the moment of a force.

• the moment of a force F with respect to a point O or an axis ∆ expresses the
force's ability to induce a rotation around point O or the axis ∆ passing through O.

• The expression for the moment of a force is given by the vector cross product of 

the position vector OM and the force  F

𝑴0 (𝑭) =  𝑶𝑴 ᴧ 𝑭
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M0 (F) =  OM ᴧ F

M0 (F) =  OM. F. sin α μ

The unit of the moment of a force is the : N.m

A body is in equilibrium and at rest if:

1.The sum of the forces applied to it is zero.

2.The sum of the torques (moments) of the applied forces is zero.

3.The velocity of the body is zero.
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Moment cinétique / Angular momentum

We call Angular momentum noted L0 ou L∆ of point M in rotation Around a point O

or about the axis ∆ passing through O, the moment of its angular momentum.

L0 =  OM ᴧ mV

The unit of angular momentum is:Kg.m-2.S-1
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In polar coordinates :

L0 =    r Ԧ𝑒r ᴧ m( ሶ𝑟 Ԧ𝑒r + r ሶ𝜃 Ԧ𝑒Ѳ)

L0 =    r Ԧ𝑒r ᴧ m ሶ𝑟 Ԧ𝑒r +  r Ԧ𝑒r ᴧ m r ሶ𝜃 Ԧ𝑒Ѳ

𝐿0 =     m r2 ሶ𝜃 𝐾

𝐿0 =  J 𝑤

The quantity J = mr2 is called the moment of inertia

It describes the distribution of mass in space.
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Théorème du   moment cinétique (TMC)
theorem of angular momentum.

𝑑

𝑑𝑡
( 𝐿0) =  σM0 (F)

The proof of the theorem of angular momentum can be summarized as follows:

𝐿0 =  𝑂𝑀 ᴧ m𝑉

We differentiate this expression with respect to time:

𝑑

𝑑𝑡
( 𝐿0) = 

𝑑

𝑑𝑡
(𝑂𝑀 ᴧ m𝑉)

𝑑

𝑑𝑡
( 𝐿0) = 

𝑑

𝑑𝑡
𝑂𝑀 ᴧ m𝑉 + 𝑂𝑀 ᴧ

𝑑

𝑑𝑡
m𝑉

𝑑

𝑑𝑡
( 𝐿0) =    𝑂𝑀 ᴧ m Ԧ𝑎 =   𝑂𝑀 ᴧ σF ext =  σM0 (F)

𝑑

𝑑𝑡
( 𝐿0) =  σM0 (F)
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Analogie entre grandeurs de translation et de rotation
Analogy between translational and rotational quantities 

Vitesse linéaire/velocity V Vitesse angulaire/angular

velocity

ѡ = ሶθ

Accélération/acceleration a Accélérationangulaire/

angular acceleration
ሷθ =  ሶѡ

Force/force
F Moment de force/Torque M0 (F)

Masse(inertie)/ mass
M Moment d’inertie/Moment 

of Inertia
J = mr2

Quantité de mouvement

momentum
P =     m   V Moment cinétique/Angular

momentum

L0    =  J w

Energie Cinétique//Kinetic

Energy

Ec = 
1

2
m V2

Energie Cinétique/Kinetic

Energy
Ec = 

1

2
J w2
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