
Gr:	Last Name:	
	First Name :	
	N°	

$TP\ N^{\circ}1$ — Measurements and Uncertainties Determination of the stiffness constant K of a spring

2- Measurement of the new length l of the spring. Deduce the elongation x of the spring. Then we deduce the average value of x and its uncertainty δx as a function of the mass m.

The systematic error of the rule used is: $\delta x_{sys} = 1 \ mm$

m (kg)	0,2	0,3	0,4	0,6	0,7
x (10 ⁻² m)					
\overline{x} ()					
δ x					

Table 01

Calculation procedure:
$\overline{\chi} =$
$\delta x = \dots$

3- Plot the graphs representing the variation of x as a function of m (x=f(m)).

		T

4- On the graph, indicate the maximum slope (p_{emax}) and the minimum slope (p_{emin}) , and then deduce the average value (\overline{p}_e) of the slope as well as its uncertainty δp_e .

	Graph
The maximum slope p_{emax}	
The minimum slope <i>p_{emin}</i>	
The average value \overline{p}_e	
The uncertainty δp_e	

Table 02

5- Present the calculation procedure.			